Q.No	Option	Q.No	Option
1	c)	31	c)
2	a)	32	c)
3	b)	33	d)
4	c)	34	b)
5	b)	35	c)
6	a)	36	c)
7	d)	37	b)
8	c)	38	c)
9	a)	39	d)
10	b)	40	c)
11	d)	41	a)
12	b)	42	a)
13	d)	43	a)
14	b)	44	b)
15	a)	45	d)
16	c)	46	c)
17	c)	47	c)
18	d)	48	d)
19	a)	49	d)
20	c)	50	d)
21	b)	51	b)
22	b)	52	b)
23	b)	53	b)
24	d)	54	c)
25	b)	55	c)
26	b)	56	c)
27	c)	57	b)
28	a)	58	a)
29	a)	59	a)
30	c)	60	c)

<u>INJSO 2012 Ans key</u> Section A: Multiple Choice Questions

Section B: Long Answer Questions

Ans.61. (a)

i. Calculation of concentration: (mol dm⁻³) Concentration of milk of magnesia (given) = 29 ppm = 29 mg dm⁻³ = 0.029 g dm⁻³

Concentration of milk of magnesia in mol dm⁻³ = 0.029/58 = 0.0005 mol dm⁻³ Using N₁V₁ = N₂V₂, $0.0005 \times 0.025 = N_2 \times 0.025$ \therefore N₂ = 0.0005 mol dm⁻³ (Concentration of acid)

ii. $Mg(OH)_2 + 2HCl ----> MgCl_2 + H_2O$

iii. A = V × C = $0.025 \times 0.0005 = 1.25 \times 10^{-4}$

Ans.61. (b) A – Phenolphthalein/base

- B bases/phenolphthalein
- C acid
- D universal indicator.
- **Ans.62.** (a) Initially mass of water = m_1 g, Mass of ice = m_2 g

Then,
$$\frac{m_2}{0.8} + \frac{m_1}{1} = 20A$$

where *A* is the area of cross - section of cylindrical vessel.

Let m_{ice} g of ice has melted (this is mass.... not volume!)

Then,
$$\frac{(m_2 - m_{ice})}{0.8} + \frac{(m_1 + m_{ice})}{1} = 19.5A$$

Get $m_{ice} = 2A$ (in grams) Note that: densities are in g/mL, volume in mL, areas in cm², heights in cm

Now, $(0.8 \times 10A) \times 0.5 \times 20 + 2A \times 80 = 10A \times 1 \times x$

Hence, $x = 24^{\circ}C$

Ans.62. (b)

 $m = 10 \text{ kg}, u = 50 \text{ ms}^{-1}, v = 10 \text{ ms}^{-1}, t = 10 \text{ sec}$

 $(m\vec{v}) = 10 \times 10 = 100 \text{ kgms}^{-1}$

 $(m\vec{u}) = 10 \times 50 = 500 \text{ kgms}^{-1}$

:. Change in momentum, $(\vec{\Delta} p) = \sqrt{500^2 + 100^2} = \sqrt{10000 \times 26} = \sqrt{2600}$ $(\vec{\Delta} p) = 100\sqrt{26}$ Force, $(\vec{F}) = \frac{(\vec{\Delta} p)}{t} = \frac{100\sqrt{26}}{10} = 10\sqrt{26}N$

$$\tan \alpha = \frac{(m\vec{v})}{(m\vec{u})} = \frac{100}{500} = 0.2 \text{ or } \alpha = \tan^{-1}(0.2)$$

Let angle between the Force and east direction is θ So, $\theta = 45 + \tan^{-1}(0.2)$

Hence, angle w.r.t. east is $(180 - \tan^{-1}(3/2))$ in clockwise direction.

Ans.63. $ABA \ge C = BCC$.

We make a couple of observations.

Observations

(a) C > 0

(b) AC < 9

Case 1: *A* < *C*

 $A < C \Rightarrow A^2 < AC < 9 \Rightarrow A < 3$. Therefore A is either 1 or 2.

Case 1a: *A* = 1

1*B*1 x *C* = *BCC* or equivalently 1*B* x *C* = *BC*. As *A* = 1, *B* > 1 and *C* > 1, implying *BC* > 1 and *BC* - *C* > 1. Note that *BC* - *C* is divisible by 10. Therefore, *BC* = 10*y* + *C* for some positive integer *y*. Also, *C* + *y* = B. But then *B* - *C* = *y*(> 0) and *BC* = 10(*B* - *C*) + *C*, implying *C* = 10*B*/(*B* + 9) = 10 - 90/(*B* + 9). As *C* is an integer, 90/(*B* + 9) must be an integer. Now 1 < *B* <= 9 i.e 10 < *B* + 9 <= 18. So we need to find out those divisors of 90 which are between 11 and 18 (both inclusive).

There are only two such, namely, 15 and 18, and the corresponding values of *B* are 6(=15-9), 9(=18-9).

So the numbers are 161 and 191, and the corresponding values of C are 4 and 5.

Case 1b: *A* = 2

 $2B2 \times C = BCC$. 2C = 10y + C for some positive integer y. Impossible.

Case 2: A > C

In this case $C^2 < AC < 9$, or C < 3. C = 1 or C = 2. C = 1 is evidently impossible. If C = 2 then $ABA \ge 2 = B22$. As A > C, it has to be 6 but then 2A = 12 > B, absurd. No solution is possible.

Final solution: 161 x 4 = 644; 191 x 5 = 955.

Ans. 64. i. The distance between two successive bases in the DNA is 3.4 nm Hence 34 cm DNA will have 10^8 bases Mass will be 660×10^8 Da (since one base pair has 2 nucleotides)

ii. 10⁸ bases. (Since the length of DNA and RNA remains same)

iii. 34 cm

iv. 110×10^8 Da. (3 nucleotides are designated as a codon and they code for one amino acid.)

Ans.65. Δ Orange solid \rightarrow green residue + colourless gas + H₂O (g) В С Α Cr_2O_3 $(NH_4)_2Cr_2O_7$ N_2 Δ $C + Mg \rightarrow$ white solid \rightarrow pungent smelling gas D Е Mg_3N_2 NH_3 $\mathbf{E} + \mathrm{HCl} \rightarrow \mathrm{dense}$ white fumes NH₄Cl $(NH_4)_2Cr_2O_7 \rightarrow Cr_2O_3 + N_2\uparrow + 4H_2O\uparrow$ $Mg + N_2 \rightarrow Mg_3N_2$ $Mg_3N_2 + 6 H_2O \rightarrow Mg(OH)_2 + 2 NH_3 \uparrow$ $NH_3 + HCl \rightarrow NH_4Cl$ Thus, $\mathbf{A} = (\mathbf{NH}_4)_2 \mathbf{Cr}_2 \mathbf{O}_7$ (ammonium dichromate)/(potassium dichromate), $\mathbf{B} = \mathbf{Cr}_2\mathbf{O}_3$ $C = N_2$ $\mathbf{D} = \mathbf{M}\mathbf{g}_3\mathbf{N}_2$ $E = NH_3$

Ans.66. i. $f_o = 1 \text{ cm}, f_e = 5 \text{ cm}, u_o = 1.5 \text{ cm}$

Now, using the formula, $\frac{1}{f_o} = \frac{1}{v_o} - \frac{1}{u_o}$ we get, $\frac{1}{1} = \frac{1}{v_o} - \frac{1}{-1.5}$

 $\therefore v_o = 3 \text{ cm}$

Also, $\frac{1}{f_e} = \frac{1}{v_e} - \frac{1}{u_e}$ or $\frac{1}{5} = \frac{1}{-25} - \frac{1}{u_e}$

:. $u_e = 4.17 \text{ cm}$

This is the distance between the first image and the eye piece.

ii. Maximum possible angular magnification is $\left(1 + \frac{D}{f}\right)$ where D = 25 cm. Hence maximum possible angular magnification = 6.

iii. From diagram it is clear that distance between the lenses is 3.00 cm + 4.17 cm = 7.17 cm.

In the above figure distance between the objective and first image, $L_1I_1 = 3.00$ cm, distance between the objective and the first image, $L_2I_1 = 4.17$ cm, distance between the eyepiece and the final image, $L_2I_2 = 25$ cm. Hence distance between the two lenses $= L_1I_1 + L_2I_1 = 3.00 + 4.17 = 7.17$ cm. *Note distances are measured along principal axis.*

Ans.67 i. Cladogenesis or branching evolution

ii. a) and c) both.

iii. True

iv. a) Behavioural isolation b) Habitat isolation

Ans.68. Observe that $38^2 = 1444$. Look at numbers of the form $(500n + 38)^2$, where 'n' is a non-negative integer (i.e n = 0, 1, 2, 3, . . .). These numbers always end in 444 and there are infinitely many of them as the set of non-negative integers is infinite.

For instance $538^2 = 289444$, $1038^2 = 1077444$.