- 1. Find the number of eight-digit numbers the sum of whose digits is 4.
- 2. Find all 4-tuples (a, b, c, d) of natural numbers with $a \le b \le c$ and $a! + b! + c! = 3^d$.
- 3. In an acute-angled triangle ABC with AB < AC, the circle Γ touches AB at B and passes through C intersecting AC again at D. Prove that the orthocentre of triangle ABD lies on Γ if and only if it lies on the perpendicular bisector of BC.
- 4. A polynomial is called a *Fermat polynomial* if it can be written as the sum of the squares of two polynomials with integer coefficients. Suppose that f(x) is a Fermat polynomial such that f(0) = 1000. Prove that f(x) + 2x is not a Fermat polynomial.
- 5. Let ABC be a triangle which it not right-angled. Define a sequence of triangles $A_iB_iC_i$, with $i \ge 0$, as follows: $A_0B_0C_0$ is the triangle ABC; and, for $i \ge 0$, $A_{i+1}, B_{i+1}, C_{i+1}$ are the reflections of the orthocentre of triangle $A_iB_iC_i$ in the sides B_iC_i, C_iA_i, A_iB_i , respectively. Assume that $\angle A_m = \angle A_n$ for some distinct natural numbers m, n. Prove that $\angle A = 60^{\circ}$.
- 6. Let $n \ge 4$ be a natural number. Let $A_1 A_2 \cdots A_n$ be a regular polygon and $X = \{1, 2, \ldots, n\}$. A subset $\{i_1, i_2, \ldots, i_k\}$ of X, with $k \ge 3$ and $i_1 < i_2 < \cdots < i_k$, is called a *good subset* if the angles of the polygon $A_{i_1}A_{i_2}\cdots A_{i_k}$, when arranged in the increasing order, are in an arithmetic progression. If n is a prime, show that a **proper** good subset of X contains exactly four elements.

- * * * --