INMO 2005: Problems and Solutions

1. Let M be the midpoint of side BC of a triangle ABC. Let the median AM intersect the incircle of
ABC at K and L, K being nearer to A than L. If AK=KL=LM, prove that the sides of triangle
ABC are in the ratio 5 : 10 : 13 in some order.

Solution:

Let I be the incentre of triangle ABC and D be its projection on BC. Observe that AB # AC as
AB = AC implies that D = L = M. So assume that AC > AB. Let N be the projection of I on
K L. Then the perpendicular IN from I to KL is a bisector of KL and as AK = LM, it is a bisector
of AM also. Hence AT =IM.

But AI = = r cosec (A/2) and

r
sin (4/2)
IM? = ID?+ DM?=17%+ (BM — BD)?
— T2+(g_(s_b))2
= 5 .

Hence 2 cosec?(4/2) = r2 + ((a/2) — (s — b)?)” giving 72 cot? (4/2) = ((b—¢)/2)*. Since b > ¢,
we obtain r cot (A/2) = ((b—c)/2). So s —a= ((b—c)/2). This gives a = 2c.
As KN = NL and AK = KL = LM, we have NL = AM /6. We also have AN = NM. Now

r2=IL?=IN?4+ NL? = AI? - AN? + NI?
1 . 1
= AIz—Zmi—l—%mZ
2
= r? cosec’(4/2) — §m3

Hence 2 cot?(A/2) = 2m2. From the above,we get
9" g

2
(b;0> :g-i(2b2+2c2—a2).

Simplification gives 5b% + 13¢% — 18bc = 0. This can be written as (b—¢)(5b—13¢c) = 0. As b # ¢, we
get 5b — 13¢ = 0. To conclude, a = 2¢, 5b = 13¢ yield

a b c

10 13 5



2. Let a and 8 be positive integers such that

8 e I
197 B
Find the minimum possible value of S.
Solution:
We have
T _p 17
17 "o 43"
That is,
9 B 25
1+ —< =<4+ —.
+ 17 < <4+ 13

Thus 4 < g < 5. Since a and B are positive integers, we may write § = 4a + x, where 0 < z < a.
Now we get

9 25

4+ —<4 4+ —.

+ 17 < + <4+ 13
So g < § that is 43z <a< _173:
17 437 95 9

We find the smallest value of = for which « becomes a well-defined integer. For z = 1,2,3 the

. 18 8 11 7 . .
bounds of a are respectively (12—5,15) , (3%,35) <5 9’ 5 3) . None of these pairs contain an

integer between them.

For x = 4, we have 42% = 6% nd @ = 7— Hence, in this case a = 7, and § = 4da+x = 2844 = 32.
43 43
This is also the least possible value because, if z > 5, then o > 2—; > =3 > 8, and so B > 37.

Hence the minimum possible value of g is 32.
3. Let p,q,r be positive real numbers, not all equal, such that some two of the equations
pr’ +2qz+r=0, g +2rc+p=0, rz’+2pz+q=0,
have a common root, say «. Prove that
(a) « is real and negative; and

(b) the third equation has non-real roots.

Solution:
Consider the discriminants of the three equations

p+qgr+r = 0 (1)
gz’ +rz+p = 0 (2)
re +pr+q = 0. 3)

Let us denote them by D;, Ds, D3 respectively. Then we have
Dy = 4(¢> — rp), Dy = 4(r® — pq), D3 = 4(p” — qr).

We observe that

Dy + Dy + D 4(p*+¢* +1° —pg—qr —rp)

2{p—a)?+(@—1)>+(r—p?} >0



since p,q,r are not all equal. Hence at least one of Dy, Dy, D3 must be positive. We may assume
D{ > 0.

Suppose D2 < 0 and D3 < 0. In this case both the equations (2) and (3) have only non-real roots
and equation (1) has only real roots. Hence the common root o must be between (2) and (3). But
then @ is the other root of both (2) and (3). Hence it follows that (2) and (3) have same set of roots.
This implies that

q_Tr_Dp

TP q
Thus p = ¢ = r contradicting the given condition. Hence both D, and D3 cannot be negative. We
may assume Dy > 0. Thus we have

q2—rp>0, rz—quO.

These two give
¢*r* > p*qr
since p, g, r are all positive. Hence we obtain qr > p? or D3 < 0. We conclude that the common root

must be between equations (1) and (2).
Thus

pa2+qa+r = 0
gl +ra+p = 0

Eliminating o2, we obtain
2(¢* —pr)a=p* —qr.
Since ¢ — pr > 0 and p? — gr < 0, we conclude that a < 0.

The condition p? — ¢r < 0 implies that the equation (3) has only non-real roots.

Alternately one can argue as follows. Suppose a is a common root of two equations, say, (1) and
(2). If o is non-real, then @ is also a root of both (1) and (2). Hence The coefficients of (1) and
(2) are proportional. This forces p = ¢ = r, a contradiction. Hence the common root between any
two equations cannot be non-real. Looking at the coefficients, we conclude that the common root «
must be negative. If (1) and (2) have common root «, then ¢*> > rp and r? > pg. Here at least one
inequality is strict for g2 = pr and r? = pq forces p = q = r. Hence ¢?r? > p?qr. This gives p? < gr
and hence (3) has nonreal roots.

. All possible 6-digit numbers, in each of which the digits occur in non-increasing order (from left to
right, e.g., 877550) are written as a sequence in increasing order. Find the 2005-th number in this
sequence.

Solution I:

Consider a 6-digit number whose digits from left to right are in non increasing order. If 1 is the first
digit of such a number, then the subsequent digits cannot exceed 1. The set of all such numbers with
initial digit equal to 1 is

{100000, 110000, 111000,111100,111110,1111111}.
There are elements in this set.

Let us consider 6-digit numbers with initial digit 2. Starting form 200000, we can go up to 222222.
We count these numbers as follows:

200000 - 211111
220000 - 221111
222000 - 222111
222200 - 222211
222220 - 222221
222222 - 222222
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The number of such numbers is 21. Similarly we count numbers with initial digit 3; the sequence
starts from 300000 and ends with 333333. We have

300000 - 322222 : 21
330000 - 332222 : 15
333000 - 333222 : 10

333300 - 333322 : 6
333330 - 333332 : 3
333333 - 333333 : 1

We obtain the total number of numbers starting from 3 equal to 56. Similarly,

400000 - 433333 : 56
440000 - 443333 : 35
444000 - 444333 : 20
444400 - 444433 : 10

444440 - 444443 : 4
444444 - 444444 : 1
126

500000 - 544444 : 126

550000 - 554444 : 70
555000 - 555444 : 35
555500 - 555544 : 15
555550 - 555554 5
555555 - 555555 : 1
252

600000 - 655555 : 252
660000 - 6655556 : 126

666000 - 666555 : 56
666600 - 666656 : 21
666660 - 666665 : 6
666666 - 666666 : 1
462

700000 - 766666 : 462
770000 - 776666 : 210

777000 - 777666 84
7700 - TTTT66 0 28
e - TTTTe 7
veerer - TTTTT 1
792

Thus the number of 6-digit numbers where digits are non-increasing starting from 100000 and ending
with 777777 is
792 + 462 + 252 4+ 126 + 56 + 21 + 6 = 1715.

Since 2005-1715=290, we have to consider only 290 numbers in the sequence with initial digit 8. We
have

800000 - 855555 : 252
860000 - 863333 : 35
864000 - 864110 3



Thus the required number is 864110.

Solution: II

It is known that the number of ways of choosing r objects from n different types of objects (with
repetitions allowed) is ("+:_1). In particular, if we want to write r-digit numbers using n digits
allowing for repetitions with the additional condition that the digits appear in non-increasing order,
we see that this can be done in ("7 ~!) ways.

Now we group the given numbers into different classes and write the number of ways in which each
class can be obtained. To keep track we also write the cumulative sums of the number of numbers
so obtained. Observe that the numbers themselves are written in ascending order. So we exhaust

numbers beginning with 1, then beginning with 2 and so on.

Numbers Digits used other | n [ r | (") | Cumulative
than the fixed part sum
beginning with 1 1,0 2[5 )= 6 6
2 2,1,0 315 (g) = 21 27
3 3,2,1,0 4 |5 (5,) = 56 83
4 4,32,1,0 515 (53 = 126 209
5 5,4,3,2,1,0 6|5 (%)= 252 461
6 6,5,4,3,2,1,0 715 (V)= 462 923
7 7,6,5,4,3,2,1,0 8 15| ()= 792 1715
from 800000 to 855555 | 5.4,3,2,1,0 6 5] (V)= 252 1967
from 860000 to 863333 | 3,2,1,0 4|4 (f) = 35 2002

The next three 6-digit numbers are 864000, 864100, 864110.
Hence the 2005th number in the sequence is 864110.

. Let z1 be a given positive integer. A sequence {z,)5>; = (x1,%2,23,---) of positive integers is such
that z,,, for n > 2, is obtained from z,,_; by adding some nonzero digit of x,_;. Prove that
(a) the sequence has an even number;

(b) the sequence has infinitely many even numbers.

Solution:

(a) Let us assume that there are no even numbers in the sequence. This means that z,; is obtained
from z,, by adding a nonzero even digit of z,, to z,, for each n > 1.
Let E be the left most even digit in 21 which may be taken in the form

I = 0102 s OkED]_D2 s Dl

where O1,0s, ..
1>1.

Since each time we are adding at least 2 to a term of the sequence to get the next term, at some
stage, we will have a term of the form

., O are odd digits (k > 0); D1, Ds,... ,D;_; are even or odd; and D; odd,

Zr =0102---OrE999---9F

where F' = 3,5,7 or 9. Now we are forced to add E to z, to get x,41, as it is the only even
digit available. After at most four steps of addition, we see that some next term is of the form

I =01020kG000M

where G replaces F of ., G = E+1, M = 1,3,5, or 7. But z; has no nonzero even digit
contradicting our assumption. Hence the sequence has some even number as its term.



(b) If there are only finitely many even terms and w; is the last term, then the sequence (z,)p2;,; =
(Tt41,Tty2,...) is obtained in a similar manner and hence must have an even term by (a), a
contradiction. Thus (z,)22,, has infinitely many even terms.

6. Find all functions f : R — R such that
f(@® +yf(2)) = f(z) + 2f(y) (1)
for all z,y, z in R. (Here R denotes the set of all real numbers.)

Solution: Taking z =y = 0 in (1), we get z2f(0) = f(0) for all z € R. Hence we obtain f(0) = 0.
Taking y = 0 in (1), we get

f(@?) = f(2) (2)
Similarly z = 0 in (1) gives
fWf(2)) =2f(y) 3)
Putting y = 1 in (3), we get
f(f(z)) =2f(1) VzeR (4)
Now using (2) and (4), we obtain
flzf()) = f(f(@*) = 2*F(1) ()
Put y = z = z in (3) also given
faf(z)) = zf(x) (6)

Comparing (5) and (6), it follows that 22 f(1) = zf(z). If z # 0, then f(z) = cx, for some constant
c. Since f(0) =0, we have f(z) = cx for £ = 0 as well. Substituting this in (1), we see that

c(@?® 4+ cyz) = cx® + cyz

or
yz=cyz Vy,z€R.

This implies that ¢> = c¢. Hence ¢ = 0 or 1. We obtain f(z) = 0 for all z or f(z) = z for all z. It is
easy to verify that these two are solutions of the given equation.
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