INMO 2006: Problems and Solutions

1. In a non-equilateral triangle ABC, the sides a, b, ¢ form an arithmetic progression. Let I and
O denote the incentre and circumcentre of the triangle respectively.

(i) Prove that IO is perpendicular to BI.
(ii) Suppose BI extended meets AC in K, and D, E are the midpoints of BC, BA respec-

tively. Prove that I is the circumcentre of triangle DK F.

Solution:

(i) Extend BI to meet the circumcircle in F. Then we know that FA = FI = FC. (See
Figure)

Let BI : IF = X : u. Applying Stewart’s theorem to triangle BAF, we get
AAF? + pAB® = (A + p) (AI* + BI - IF).
Similarly, Stewart’s theorem to triangle BCF gives
ACF? + uBC? = (A + ) (CI? + BI - IF).
Since C'F = AF, subtraction gives
p(AB? — BC?) = (A +p) (AI” — CT?).

Using the standard notations AB = ¢, BC =a, CA="band s = (a + b+ c)/2, we get
AI? =7r? 4+ (s — a)? and CI? = r? + (s — c¢)? where r is the in-radius of ABC. Thus

p(c® —a?) = A +p)((s—a)* = (s —¢)?) = (A +p) (c— a)b.

It follows that either ¢ = a or u(c+a) = (A+p)b. But ¢ = a implies that a = b = ¢ since
a, b, c are in arithmetic progression. However, we have taken a non-equilateral triangle
ABC. Thus ¢ # a and we have u(c+a) = (A + p)b. But ¢+ a = 2b and we obtain



(i)

2bp = (A + p)b. We conclude that A = p. This in turn tells that I is the mid-point of
BF'. Since OF = OB, we conclude that OI is perpendicular to BF'.

Alternatively

Applying Ptolemy’s theorem to the cyclic quadrilateral ABCF, we get

AB-CF + AF - BC = BF - CA.

Since CF = AF, we get CF(c+a) = BF-b = BF(c+a)/2. Thisgives BF = 2CF = 2IF.
Hence [ is the mid-point of BF and as earlier we conclude that OI is perpendicular to
BF.

Alternatively

Join BO.We have to prove that ZBIO = 90°, which is equivalent to BI? + I0? = BO?.
Draw IL perpendicular to AB. Let R denote the circumradius of ABC and let A denote
its area. Observe that BO = R, I0?> = R?> — 2Rr,

BL ca

BI:W:(s—b)

Thus we obtain ac
BI? = ac(s — b) /s = 3

since a, b, ¢ are in arithmetic progression. Thus we need to prove that

%+R2—2Rr:R2.

This reduces to proving 2Rr = ac/3. But

abc A abc abc ac
Rr 4N s 2s a+b+c 3’

using a + ¢ = 2b. This proves the claim.

Join ID. Note that ZBIO = ZBDO = 90°. Hence B, D, I,O are concyclic and hence
/ZBID = /BOD = A. Since ZDBI = ZKBA = B/2, it follows that triangles BAK
and BID are similar. This gives

BA BK AK

BI  BD ID’
However, we have seen earlier that BI = ac/3. Moreover AK = bc/(a + ¢). Thus we
obtain

BK

BA-BD 1 AK-BI 1
= S =V, ID=" ac

BI BA 2\ 3

1/
By symmetry, we must have IE = 3 %. Finally

IK:L.BKZEBKZE ac
at+b+ec 3 2V 3
Thus ID = IE = IK and I is the circumcentre of DK F.

Alternatively
Observe that AK = be/(a+c¢) =c¢/2 = AE. Since Al bisects angle A, we see that AIE

is congruent to ATK. This gives IE = IK. Similarly CID is congruent to CIK giving
ID = IK. We conclude that ID =I1IK = IE.



2. Prove that for every positive integer n there exists a unique ordered pair (a,b) of positive
integers such that

1
nzi(a+b—1)(a+b—2)+a.

Solution: We have to prove that f : N x N — N defined by
1
f(a,b) = §(a—|—b— )a+b—-2)+a, Va,beN,

is a bijection. (Note that the right side is a natural number.) To this end define

n+1)

T(n):n( 5 n € NU {0}.

An idea of the proof can be obtained by looking at the following table of values of f(a,b) for
some small values of a, b.

b

a 1 2 3 4 5 6
1|1 2 4 7 11 16
2 |3 5 8 12 17
3 |6 9 13 18

We observe that the n-th diagonal runs from (1,7)-th position to (n,1)-th position and the
entries are n consecutive integers; the first entry in the n-th diagonal is one more than the
last entry of the (n — 1)-th diagonal. For example the first entry in 5-th diagonal is 11 which
is one more than the last entry of 4-th diagonal which is 10. Observe that 5-th diagonal
starts from 11 and ends with 15 which accounts for 5 consecutive natural numbers. Thus
we see that f(n—1,1) + 1 = f(1,n). We also observe that the first n diagonals exhaust all
the natural numbers from 1 to T'(n). (Thus a kind of visual bijection is already there. We
formally prove the property.)

We first observe that
fla,b) —T(a+b—2) =a>0,
and
(a+b—-1)(a+b) (a+b—1)(a+b-2)

Ta+b—1)— f(a,b) = 5 — 5 —a=b—-12>0.




Thus we have

(a+b—1)(a+b—-2)
2

Ta+b—-2) < f(a,b) = +a<T(a+b—-1).

Suppose f (al, bl) =f ((1,2, b2). Then the previous observation shows that

T(a1 + b — 2) < f(al,bl) < T(a1 + by — 1),
T(a2 + by — 2) < f(az,bz) < T(GQ + by — 1).

Since the sequence (T'(n))° , is strictly increasing, it follows that aq + by = az + be. But then
the relation f (al,bl) =f (a2, bz) implies that a; = a2 and by = by. Hence f is one-one.

Let n be any natural number. Since the sequence (T'(n))22, is strictly increasing, we can find
a natural number k£ such that
T(k—1) <n<T(k).

Equivalently,
(k—1)k <n< k(k+1)
2 2

: (1)
k(k —

1
Now set a =n — T) and b=k —a+ 1. Observe that a > 0. Now (1) shows that

o BE-D) Bk KE-D
T

Hence b=k —a+1 > 1. Thus a and b are both positive integers and

1 -1
f(a,b) = §(a—l—b—1)(a+b—2)+a: %—i—a:n.
This shows that every natural number is in the range of f. Thus f is also onto. We conclude

that f is a bijection.

. Let X denote the set of all triples (a, b, ¢) of integers. Define a function f : X — X by
fla,b,¢) = (a+b+c, ab+ bc+ ca, abe).
Find all triples (a,b,c) in X such that f(f(a,b,c)) = (a,b,c).

Solution: We show that the solutionset consists of {(¢,0,0); t € Z}U{(—1,—1,1)}. Let us
put a +b+c=d, ab+ bc+ ca = e and abc = f. The given condition f(f(a, b, c)) = (a,b,¢)
implies that

d+e+f=a, detef+ fd=bdef =c.

Thus abcdef = fc and hence either ¢f = 0 or abde = 1.

Case I: Suppose ¢f = 0. Then either ¢ = 0 or f = 0. However ¢ = 0 implies f = 0 and
vice-versa. Thus we obtain a + b =d, d+ e = a, ab = e and de = b. The first two relations
give b = —e. Thus e = ab = —ae and de = b= —e. We get either e =0 or a =d = —1.

If e =0, then b =0 and a = d = ¢, say. We get the triple (a,b,c) = (¢,0,0), where t € Z. If
e # 0, then a = d = —1. But then d + e + f = a implies that —1 + e+ 0 = —1 forcing e = 0.
Thus we get the solution family (a,b,c) = (¢,0,0), where ¢t € Z.



Case II: Suppose cf # 0. In this case abde = 1. Hence either all are equal to 1; or two equal
to 1 and the other two equal to —1; or all equal to —1.

Suppose a =b=d =e = 1. Then a + b+ ¢ = d shows that ¢ = —1. Similarly f = —1. Hence
e=ab+bc+ca=1—-1-1= —1 contradicting e = 1.

Suppose a =b=1andd =e= —1. Thena+b+c=dgivesc=-3andd+e+ f=a
gives f = 3. But then f =abc=1-1-(-3) = —3, a contradiction. Similarly a = b= —1 and
d = e =1 is not possible.

Ifa=1,b=-1,d=1,e=—1,thena+ b+ c=d gives ¢ = 1. Similarly f = 1. But then
f=abc=1-1-(—1) = —1 a contradiction. Ifa =1, b= —1,d= -1, e =1, then ¢ = —1 and
e=ab+bc+ca=—-1+1—-1=—1 and a contradiction to e = 1. The symmetry between
(a,b,c) and (d,e, f) shows that a = —1, b = 1,d = 1, e = —1 is not possible. Finally if
a=-1,b=1,d=—-1and e =1, then ¢c = —1 and f = —1. But then f = abc is not satisfied.
The only case left is that of a, b,d, e being all equal to —1 . Then ¢ =1 and f = 1. It is easy
to check that (—1,—1,1) is indeed a solution.

Alternatively
cf # 0 implies that |c[| > 1 and |f| > 1. Observe that

d—2e=a’+0+32, a®—2b=d>+e*+ f2
Adding these two, we get —2(b+ €) = b% + ¢® + €2 + f2. This may be written in the form
b+1)2+(e+1)+2+f2-2=0.

We conclude that ¢ + f? < 2. Using |c| > 1 and |f| > 1, we obtain |¢] = 1 and |f| = 1,
b+1=0ande+1=0. Thusb=e=—-1. Nowa+d=d+e+ f+ a+ b+ c and this gives
b+c+e+ f=0. It follows that c = f =1 and finally a = d = —1.

. Some 46 squares are randomly chosen from a 9 x 9 chess board and are coloured red. Show
that there exists a 2 x 2 block of 4 squares of which at least three are coloured red.

Solution: Consider a partition of 9 x 9 chess board using sixteen 2 X 2 block of 4 squares
each and remaining seventeen single squares as shown in the figure below.

16

15 14

10

‘ 11 12 13

If any one of these 16 big squares contain 3 red squares then we are done. On the contrary,
each may contain at most 2 red squares and these account for at most 16 -2 = 32 red squares.
Then there are 17 single squares connected in zig-zag fashion. It looks as follows:



We split this again in to several mirror images of L-shaped figures as shown above. There
are four such forks. If all the five unit squares of the first fork are red, then we can get a
2 x 2 square having three red squares. Hence there can be at most four unit squares having
red colour. Similarly, there can be at most three red squares from each of the remaining
three forks. Together we get 4 + 3 - 3 = 13 red squares. These together with 32 from the big
squares account for only 45 red squares. But we know that 46 squares have red colour. The
conclusion follows.

. In a cyclic quadrilateral ABCD, AB =a, BC =b, CD = ¢, ZABC = 120°, and ZABD =
30°. Prove that

(i) c>a+b
(ii) [Veta—+ve+b=ve—a-b.

Solution:

Applying cosine rule to triangle ABC, we get
AC? = a* + b* — 2abcos 120° = a? + b* + ab.
Observe that ZDAC = ZDBC = 120° — 30° = 90°. Thus we get

AC? 4
2 _ 22 2
c = os230° 3((1 +b —I—ab).

So

02—(a+b)2:§(a2+62+ab)—(a2+62+2ab): (a—

This proves ¢ > a + b and thus (i) is true.




For proving (ii), consider the product
Q=(a+p+7)(a=B-7)(atB-7)(a=B+1),
where a = y/c+a, 8 = +/c+ b and v = +/c — a — b. Expanding the product, we get

Q = (c+a)’+(c+b)?+(c—a—-b?—-2(c+a)c+b)—2(c+a)(c—a—b)—2(c+b)(c—a—Db)
= =3¢+ 4a® + 4b* + 4ab
= 0.

Thus at least one of the factors must be equal to 0. Since a+ +v >0 and a+  —v > 0,
it follows that the product of the remaining two factors is 0. This gives

Veta—Ve+tb=vVec—a—-borvecta—Ve+b=—/c—a—b.

We conclude that

‘\/c+a—\/c+b‘:\/c—a—b.

6. (a) Prove that if n is a positive integer such that n > 40112, then there exists an integer

1
h that n < 12 < (14—
suc at n <17 < ( + 2005)

(b) Find the smallest positive integer M for which whenever an integer n is such that n > M,

1
there exists an integer I, such that n < I? < (1 + m)

Solution:

(a) Let n > 40112 and m € N be such that m? < n < (m + 1)2. Then

1 1
1+——|n— 12 > ([1+—|m?2— 1)2
( +2005)n (m+1)°" > ( +2005>m (m+1)

m
= — —2m—1
2005 m
= —0 (m® — 4010m — 2005)
1
= — —2005)% — 20052 — 2005
1
> —O< (4011 — 2005)% — 20052 — 2005)
1 2 2
= 5005 | 2006% = 2005% — 2005
1 2006
= 4011 — 2 )
2005( 0 005) = 2005 = 0

Thus we get

1
1)? 14+ ——
n < (m+1) <( +2005>

and 12 = (m + 1)? is the desired square.



(b) We show that M = 40102 + 1 is the required least number. Suppose n > M. Write
n = 40102 + k, where k is a positive integer. Note that we may assume n < 40112 by
part (a). Now

1 1
— )n—40112 = (1+—)(4010% — 40112
(1+2005)n 0 ( +2005)<00 +k) 0

k
= 4010° +2-4010 + k + —— — 40112
010% +2-4010 + +2005 0

k
= (4010 +1)2+ (k—1) + — — 40112
(4010 + 1)* + ( )+2005
k

= (k=14 —>0.
( )+2005

Thus we obtain

1
40102 40112 1+ —— )n.
010 <n < 40 <(+2005)n

We check that M = 4010? will not work. For suppose n = 4010?. Then

1
(1 + m)40102 = 4010% + 2 - 4010 = 40112 — 1 < 40112.

1
Thus there is no square integer between n and (1 + m) n.

This proves (b).




