Problems and Solutions of INMO-2007

1. In a triangle ABC right-angled at C, the median through B bisects the angle
between BA and the bisector of ZB. Prove that

5 < AB <3

2  BC '

Solution 1:

Since F' is the mid-point of AC, we have AF =
EC = b/2. Since BD bisects ZABC, we also

A
know that CD = ab/(a + ¢). Since BE bisects
ZABD, we also have
BD? DE? .
BA2  EA%
c E
However,
a’b?
BD* = BC*+CD*=d’+ ——, Bl D
2 (a+c) /4 ab(a+0)
DE? = (9— “b> . g B2 c
2 a+c a

Using these in the above expression and simplifying, we get
a*{(a+c¢)* + b’} = *(c—a)’.
Using ¢ = a? + b? and eliminating b, we obtain
¢ — 2ac? — a’c — 2a® = 0.
Introducing ¢ = ¢/a, this reduces to a cubic equation;
=22 —t—2=0.

Consider the function f(t) = ¢* — 2t* —t — 2 for ¢t > 0 (as ¢/a is positive). For
0 <t <2 wesee that f(t) = t*(t —2) —t — 2 < 0. We also observe that
f(t) = (t —2)(t* — 1) — 4 is strictly increasing on (2,00). It is easy to compute

f(5/2) = —% <0, and f(3)=4>0.

Hence there is a unique value of ¢ in the interval (5/2,3) such that f(¢) = 0.

We conclude that 5
c
— < — <3
2 a

Solution 2: Let us take Z/B/4 =60. Then /EBC = Z/DBFE =6 and ZCBD =
20.Using sine rule in triangles BEA and BEC, we get

BE _ AE
sinA  sinf’
BE _ CE

sin90°  sin360
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Since AE = C'E, we obtain sin 30sin A = sinf. However A = 90° — 46. Thus
we get sin 36 cos 46 = sin f. Note that

c 1 sin 30
— = = =3 —4sin?6.
a cosdf sin 6 St

This shows that ¢/a < 3. Using c¢/a = 3 — 4sin?#, it is easy to compute
cos20 = ((¢c/a) — 1) /2. Hence

1 2
g=(:0S40=—(E—1> - 1.
c 2 \a

Suppose ¢/a < 5/2. Then ((c/a) — 1)2 <9/4 and a/c > 2/5. Thus

2
P YN S R
5 ¢ 8 8

which is absurd. We conclude that ¢/a > 5/2.

Y

. Let n be a natural number such that n = a®+b? + ¢, for some natural numbers
a, b, c. Prove that

In = (pla + ¢+ 7‘10)2 + (p2a + q2b + r20)2 + (pga + q3b + r30)2,

where p;’s, g;’s, r;’s are all nonzero integers. Further, if 3 does not divide at
least one of a,b,c, prove that 9n can be expressed in the form z? + y? + 22,
where x, ¥, z are natural numbers none of which is divisible by 3.

Solution: It can be easily seen that
In = (2b+2c — a)® + (2c + 2a — b)* + (2a + 2b — ¢)*.

Thus we can take p1 = po =p3 =2, g1 =@ =q =2and ry =ry =rz3 = —1.
Suppose 3 does not divide ged(a, b, ¢). Then 3 does divide at least one of a, b, ¢;
say 3 does not divide a. Note that each of 2b+2c—a, 2c+2a—b and 2a+2b—c
is either divisible by 3 or none of them is divisible by 3, as the difference of any
two sums is always divisible by 3. If 3 does not divide 2b+ 2¢ — a, then we have
the required representation. If 3 divides 2b + 2¢ — a, then 3 does not divide
2b 4+ 2¢ + a. On the other hand, we also note that

In=(2b+2c+a)’+ (2c—2a —b)? + (—2a +2b — ¢)? = 2% + > + 27,

where = 2b+2c+a, y = 2c—2a—b and z = —2a+2b—c. Since x—y = 3(b+a)
and 3 does not divide z, it follows that 3 does not divide y as well. Similarly,
we conclude that 3 does not divide z.

. Let m and n be positive integers such that the equation 22 — mz +n = 0 has
real roots o and . Prove that o and § are integers if and only if [ma] + [mf]
is the square of an integer. (Here [z] denotes the largest integer not exceeding

Solution: If v and 8 are both integers, then
[ma] 4+ [mpB] = ma+ mB =m(a+ B) = m’.
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This proves one implication.

Observe that a + = m and a8 = n. We use the property of integer function:
xz — 1 < [z] < z for any real number z. Thus

m*—2=m(a+8)—2=ma—-1+mpB—1< [ma]+[mp] <m(a+p) =m’.

Since m and n are positive integers, both a and S must be positive. If m > 2,
we observe that there is no square between m? —2 and m?. Hence, either m = 1
or [ma] + [mB] = m?. If m =1, then a + 8 = 1 implies that both « and 3 are
positive reals smaller than 1. Hence n = a3 cannot be a positive integer. We
conclude that [ma] + [mB] = m?. Putting m = o + (3 in this relation, we get

[&®+n]+ [8°+n] =(a+ ﬂ)Q.
Using [z + k] = [z] + & for any real number x and integer k, this reduces to
[®] + [B°] = + B~
This shows that o and 3% are both integers. On the other hand,
o = B2 = (a+8)(a—B) =m(a-p).
Thus ot g

(a—8) = -

m
is a rational number. Since a4 = m is a rational number, it follows that both
a and A are rational numbers. However, both o? and /3% are integers. Hence
each of o and f is an integer.

4. Let 0 = (a1, a9,0as, ... ,a,) be a permutation of (1,2,3,...,n). A pair (a;,a;)
is said to correspond to an inversion of o, if i < j but a; > a;. (Example: In the
permutation (2,4, 5, 3, 1), there are 6 inversions corresponding to the pairs (2, 1),
4,3), (4,1), (5,3), (5,1), (3,1).) How many permutations of (1,2,3,...n),
(n > 3), have exactly two inversions?

Solution: In a permutation of (1,2,3,...,n), two inversions can occur in only
one of the following two ways:

(A) Two disjoint consecutive pairs are interchanged:

(1,2,3,j—1,5,j+1,j+2...k—1kk+1,k+2,...,n)
— (1,2, =1, 54+1,5,5+2, ... k=1,k+1,kk+2,...,n).

(B) Each block of three consecutive integers can be permuted in any of the
following 2 ways;

(1,2,3,...kk+1,k+2,...,n) — (1,2,...,k+2,k,k+1,... n);
(1,2,3,...k,k+1,k+2,...,n) — (L,2,...,k+1k+2k,...,n).

Consider case (A). For j = 1, there are n — 3 possible values of k; for j = 2,
there are n — 4 possibilities for £ and so on. Thus the number of permutations
with two inversions of this type is

(n—-3)(n-2)

1+2+--+(n—3)= 5




In case (B), we see that there are n — 2 permutations of each type, since k can
take values from 1 to n — 2. Hence we get 2(n — 2) permutations of this type.

Finally, the number of permutations with two inversions is

(n—=3)(n-2) (n+1)(n—2)-

An —92) =
2 +2(n —2) 2

. Let ABC be a triangle in which AB = AC. Let D be the mid-point of BC' and

P be a point on AD. Suppose F is the foot of perpendicular from P on AC. If
AP _ BP BD

e S — 2
PD_ PE »ap =™ and z = m*(1 + X), prove that
22— (N¥-XN=-2)z+1=0.

Hence show that A > 2 and A = 2 if and only if ABC' is equilateral.

Solution:
Let AD =h, PD =y and BD = DC = a. We
R observe that BP? = a? + 2. Moreover,
. DC  a(h—y)
PE = PAsin /DAC = (h — =
- sin C=(h-y) 1 P
hy E where b = AC = AB. Using AP/PD = (h —
° P y)/y, we obtain y = h/(1 + X). Thus
y 2 BP? _ (@ +y2)b2_
PE?  (h—y)2%a?
1
B a D a C

But (h —y) = Ay = Ah/(1+ ) and b* = a? + h?. Thus we obtain
(a>(1+ X\)? 4 h?)(a® + h?)
a’h? '

Using m = a/h and z = m?(1 + ), this simplifies to

A=

22—z =X =-2)+1=0.

Dividing by z, this gives
z+1:)\3—/\2—2.
z

However z + (1/z) > 2 for any positive real number z. Thus A* — )2 — 4 > 0.
This may be written in the form ()\ — 2) ()\2 + A+ 2) >0. But >+ X+2>0.
(For example, one may check that its discriminant is negative.) Hence \ > 2.
If A\ = 2, then z + (1/2) = 2 and hence z = 1. This gives m®> = 1/3 or
tan(A4/2) = m = 1/v/3. Thus A = 60° and hence ABC is equilateral.

Conversely, if triangle ABC is equilateral, then m = tan(4/2) = 1/4/3 and
hence z = (14 A)/3. Substituting this in the equation satisfied by z, we obtain

(1+2)* =31+ A (A =22 -2)+9=0.

This may be written in the form ()\ — 2) (3/\3 + 6A% + 8\ + 8) = 0. Here the
second factor is positive because A > 0. We conclude that A\ = 2.
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6. If z,y, z are positive real numbers, prove that

(m+y+z)2(yz+zx+xy)2 <3(y* +yz 4 2°) (22 + 2z + 2°) (2 + 2y + 7).

Solution 1: We begin with the observation that

3 1 3
2 +ay+y’ = Z($+y)2+1($—y)2 > Z(:r+y)2,

and similar bounds for y? + yz + 22, 22 + za + 22. Thus

3z + 2y +9)) (v +yz + 2°) (22 + 2z + 27) > Z—i(x + y)Q(y +z)2(z +x)2.

Thus it is sufficient to prove that

(z+y+2)(zy+yz+22) <=(z+y)(y+2) (2 +2).

| ©

Equivalently, we need to prove that
8(z+y+2)(zy+yz+22) <9(z+y)(y+2)(z+2).
However, we note that
(z+y)(y+2)(z+2) = (z+y+2)(yz + 22 + zy) — 2y2.
Thus the required inequality takes the form
(z +y)(y+2)(z + ) > 8ye.

This follows from AM-GM inequalities;

TH+y>2/ry, y+z22>2/yz, z-+x>2/21.

Solution 2: Let us introduce x +y =c¢, y+ 2 =a and z +x = b. Then a,b,c
are the sides of a triangle. If s = (a 4+ b+ ¢)/2, then it is easy to calculate
r=s5—a,y=5—b,z=s—cand x +y+ 2 =s. We also observe that

1 3 1 3
P’ +ay+y’ = (z+y)’—zy = cQ—Z(c+a—b)(c+b—a) = ZC2+Z(G_Z))2 > ZCQ.

Moreover, zy +yz + 22 = (s —a)(s —b) + (s = b)(s — ¢) + (s — ¢)(s — a). Thus
it si sufficient to prove that

s Z(s —a)(s—b) < gabc.

But, > (s —a)(s—b) = r(4R+r), where r, R are respectively the in-radius, the
circum-radius of the triangle whose sides are a, b, ¢, and abc = 4Rrs. Thus the
inequality reduces to

9
r(dR+r) < §Rr.

This is simply 2r < R. This follows from IO? = R(R — 2r), where I is the
incentre and O the circumcentre.



Solution 3: If we set x = Aa, y = Ab, z = Ac, then the inequality changes to
(a+b+c)(ab+ be + ca)® < 3(a® + ab + b*)(b” + be + ¢*)(¢® + ca + a°).

This shows that we may assume x +y + z = 1. Let a = xy + yz + zx. We see
that

P ray+y? = (z+y)? -y
(z+y)(1—2)—zy
r+y—a=1—-z2z—a.

Thus

[[@+2y+y) = 1—a-2)(1-a-2)(1-a-y)
= 1-a)P-(1-a)’+(1-a)a—zyz
= o’ -’ —ayz

3

Thus we need to prove that a? < 3(a? — a® — zyz). This reduces to

3zyz < (2 — 3a).
However
3a=3(xy+yz+27) < (v +y+2)°* =1,
so that 2 — 3a > 1. Thus it suffices to prove that 3zyz < a?. But

o —3zyz = (vy+yz+22)® —3zyz(r +y+ 2)
= Z 2*y? — zyz(z +y + 2)

cyclic

1
= 3 Z(xy—yz)QEO.

cyclic




