Problems and Solutions of INMQO-2008

1. Let ABC be a triangle, I its in-centre; A;, By, Ci be the reflections of I in BC, CA, AB
respectively. Suppose the circum-circle of triangle 41 B1C1 passes through A. Prove that By, Ch,
I, I are concyclic, where I; is the in-centre of triangle A; B1CY.

Solution:

Note that TA; = IB; = ICy = 2r, where r is the in-radius of the triangle ABC. Hence I is the
circum-centre of the triangle A; By C,.

Let K be the point of intersection of IB; and AC. Then IK = r, IA = 2r and ZIKA = 90°.
It follows that ZIAK = 30° and hence ZIAB; = 60°. Thus AIB; is an equilateral triangle.
Similarly triangle ATC is also equilateral. We hence obtain AB; = ACy, = AI = 1B, = ICy, = 2r.

We also observe that /B, IC; = 120° and IB; AC} is a thombus. Thus ZB; AC; = 120° and by
concyclicity ZA; = 60°. Since AB; = AC4, A is the midpoint of the arc B1 AC;. It follows that
A, A bisects ZA; and I, lies on the line A; A. This implies that

ZB1I,Cy =90° + ZA; /2 = 90° + 30° = 120°.
Since ZB;ICy = 120°, we conclude that By, I, I, C; are concyclic. (Further A is the centre.)
2. Find all triples (p,z,y) such that p® = y* + 4, where p is a prime and z,y are natural numbers.
Solution: We begin with the standard factorisation
vt 4= (2 -2y +2) (12 + 2y +2).

Thus we have y2 — 2y +2 = p™ and y? + 2y + 2 = p" for some positive integers m and n such
that m +n = z. Since y? — 2y + 2 < y? + 2y + 2, we have m < n so that p™ divides p". Thus
y? — 2y + 2 divides y? + 2y + 2. Writing y? + 2y + 2 = y® — 2y + 2 + 4y, we infer that y* — 2y + 2
divides 4y and hence y? — 2y + 2 divides 4y2. But

4y =4(y* - 2y +2) + 8(y — 1).
Thus y2 — 2y + 2 divides 8(y — 1). Since y? — 2y + 2 divides both 4y and 8(y — 1), we conclude
that it also divides 8. This gives y2 — 2y +2=1,2, 4 or 8.
Ify? —2y+2=1,theny=1and y* +4 =5, givingp=>5and z = 1. If y> — 2y + 2 = 2, then
y? — 2y = 0 giving y = 2. But then y* + 4 = 20 is not the power of a prime. The equations

y? —2y+2 =4 and y? — 2y + 2 = 8 have no integer solutions. We conclude that (p,z,y) = (5,1,1)
is the only solution.

Alternatively, using y2 — 2y +2 = p™ and y2 + 2y +2 = p" , we may get
dy=pm(p " —1).

If m > 0, then p divides 4 or y. If p divides 4, then p = 2. If p divides y, then y? — 2y + 2 = p™
shows that p divides 2 and hence p = 2. But then 2% = y* +4, which shows that y is even. Taking
y = 2z, we get 2272 = 4z* 4 1. This implies that z = 0 and hence y = 0, which is a contradiction.
Thus m = 0 and y2 — 2y + 2 = 1. This gives y = 1 and hence p = 5, 2 = 1.



3. Let A be a set of real numbers such that A has at least four elements. Suppose A has the property
that a? + bc is a rational number for all distinct numbers a, b, c in A. Prove that there exists a
positive integer M such that av M is a rational number for every a in A.

Solution: Suppose 0 € A. Then a? = a® + 0 x b is rational and ab = 02 + ab is also rational for
all a,bin A, a #0,b # 0, a # b. Hence a = a1V M for some rational a; and natural number M.
For any b # 0, we have

b\/M:a—b.

ai
which is a rational number.

Hence we may assume 0 is not in A. If there is a number @ in A such that —a is also in A, then
again we can get the conclusion as follows. Consider two other elements ¢,d in A. Then ¢ 4+ da is
rational and ¢ — da is also rational. It follows that ¢? is rational and da is rational. Similarly, d?
and ca are also rationals. Thus d/c = (da)/(ca) is rational. Note that we can vary d over A with
d # ¢ and d # a. Again ¢? is rational implies that ¢ = ¢;v/M for some rational ¢; and natural
number M. We observe that ¢v/M = ¢; M is rational, and

avM = %,

C1

so that av/ M is a rational number. Similarly is the case with —av/M. For any other element d,

bVM= Mclt—ci

is a rational number.

Thus we may now assume that 0 is not in A and a + b # 0 for any a,b in A. Let a,b, ¢, d be four
distinct elements of A. We may assume |a| > |b. Then d? + ab and d? + bc are rational numbers
and so is their difference ab—be. Writing a® + ab = a® + bc+ (ab — be), and using the facts a® + be,
ab — be are rationals, we conclude that a? + ab is also a rational number. Similarly, b2 + ab is also
a rational number.

Consider
a a®>+ab

=} e
Note that a? + ab > 0. Thus ¢ is a rational number and a = bq. This gives a? + ab = b*(¢® + q).

Let us take b?(¢®> + q) = I. Then
l T
b = _— = -,
o \ ¢ +4 \/;

where 2z and y are natural numbers. Take M = zy. Then |b|VM = z is a rational number.

Finally, for any c in A, we have
VM = b\/Ml—c),

is also a rational number.

4. All the points with integer coordinates in the zy-plane are coloured using three colours, red, blue
and green, each colour being used at least once. It is known that the point (0,0) is coloured red
and the point (0, 1) is coloured blue. Prove that there exist three points with integer coordinates
of distinct colours which form the vertices of a right-angled triangle.

Solution: Consider the lattice points(points with integer coordinates) on the lines y = 0 and
y = 1, other than (0,0) and (0, 1), If one of them, say A = (p, 1), is coloured green, then we have a
right-angled triangle with (0,0), (0,1) and A as vertices, all having different colours. (See Figures
1 and 2.)
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If not, the lattice points on y = 0 and y = 1 are all red or blue. We consider three different cases.

Case 1. Suppose a point B = (c,0) is blue. Consider a green point D = (p,q) in the plane.
Suppose p # 0. If its projection (p,0) on the z-axis is red, then (p,q), (p,0) and (c,0) are the
vertices of a required type of right-angled triangle. If (p,0) is blue, then we can consider the
triangle whose vertices are (0,0), (p,0) and (p,q). If p = 0, then the points D, (0,0) and (c,0)
will work.(Figure 3.)

Case 2. A point D = (¢,1), on the line y = 1, is red. A similar argument works in this case.
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Case 3. Suppose all the lattice points on the line y = 0 are red and all on the line y = 1 are
blue points. Consider a green point E = (p, q), where ¢ # 0 and ¢ # 1.(See Figure 4.) Consider
an isosceles right-angled triangle EK M with ZE = 90° such that the hypotenuse K M is a part
of the z-axis. Let EM intersect y = in L. Then K is a red point and L is a blue point. Hence
EKL is a desired triangle.

. Let ABC be a triangle; T'4, I'g, I'c be three equal, disjoint circles inside ABC such that I'4
touches AB and AC; I'g touches AB; and BC, and I'c touches BC and CA. Let I be a circle
touching circles I'y4, I'g, I'c externally. Prove that the line joining the circum-centre O and the
in-centre I of triangle ABC' passes through the centre of T'.

Solution: Let O1, O2, O3 be the centres of the circles I'4, I'g, I'c respectively, and let P be the
circum-centre of the triangle O102,03. Let x denote the common radius of three circles T'4, I'p,
T'c. Note that P is also the centre of the circle T', as O1 P, Oy P, O3 P each exceed the radius of
T by z. Let D, X, K, L, M be respectively the projections of I, P, O, O, Oz on BC' .
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From DL — LO: t BL = z(s — b) ID =r and BD = b). Similarly, CM =
om 2 = pT, We ge = z(s — b)/r, as =r an = (s — b). Similarly, =

z(s — ¢)/r. Therefore, LM = a — %(s —b+s—c)= g(r — ). Since O2 LM O3 is a rectangle and
r
PX is the perpendicular bisector of 0,03, it is perpendicular bisector of LM as well. Thus
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z a z(b—2c)

BX = BL+LX=-(s— Ay =)= = —
+ T(s b)+2(r x) 5 5

DK = BK-BD:%_(s_b)zb;C,
YK = BK_Bch_l_g+a:(b—c)_:c(b—c)
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Hence we get
XK =z
DK r

We observe that the sides of triangle O; 0203 are
a b c
0203:LM:;(T’—JL'), 0301:;(7“—.'17), 0102:;(7‘—31).

Thus the sides of 010203 and those of ABC' are in the ratio (r — z)/r. Further, as the sides of
010503 are parallel to those of ABC, we see that I is the in-centre of 010203 as well. This
gives IP/IO = (r — z)/r, and hence PO/IO = z/r. Thus we obtain

XK PO

DK 10’
It follows that I, P,O are collinear.
Alternately, we also infer that I is the centre of homothety which takes the figure 010203 to
ABC'. Hence it takes P to O. It follows that I, P,O are collinear

. Let P(z) be a given polynomial with integer coefficients. Prove that there exist two polynomials

Q(z) and R(z), again with integer coefficients, such that (i) P(x)Q(z) is a polynomial in z%; and

(ii) P(x)R(z) is a polynomial in z3.

Solution: Let P(x) = ag + a12 + a22> + - - - + a,z™ be a polynomial with integer coefficients.

Part (i) We may write
P(z) = ag + a22” + asz* + -+ + (a1 + azz® + azz® + -+ ).

Define
Q(z) = ap + a2z’ + asz* + -+ — z(a1 + azz® + azz® + ).



Then Q(z) is also a polynomial with integer coefficients and
P(z)Q(z) = (ao + a22® + asz® + - --)2 —2*(a1 + azz® + azz® + - --)2

is a polynomial in z2.

Part (ii) We write again
P(z) = A(z) + B(z) + 2°C(2),

where
A(z) = ao+asz®+aex+---,
B(zx) = a1 + asx® + azx® + - -,
C(z) = ay+asz®+agz®+---.

Note that A(z), B(z) and C(z) are polynomials with integer coefficients and each of these is a
polynomial in #2. We may introduce

S(z) = A(z)+wzB(z)+w?2?C(z),
T(z) = A(z)+w?zB(z)+ wrC(x),

where w is an imaginary cube-root of unity. Then
S@T(@) = (A(@))" +* (B)” +2*(C@)*
— zA(2)B(z) — 2*B(x)C(z) — 22C(x)A()
since w® = 1 and w + w? = —1. Taking R(z) = S(x)T(z), we obtain
P(z)R(z) = (A(z))’ + 2% (B(x))® + 2°(C(z))® — 323 A(z) B(z)C(x),
which is a polynomial in 3. This follows from the identity
(a+b+c)(a®+b* +c? —ab—bc — ca) = a® + b% + ¢ — 3abe.
Alternately, R(x) may be directly defined by

R(z) = (A(2))” + 2% (B(2))” + 2* (C(2))*
— zA(z)B(z) — 2°B(x)C(z) — 22C(x)A(x).




