24+th Indian National Mathematical Olympiad, 2009

Problems and Solutions

1. Let ABC be a triangle and let P be an interior point such that ZBPC = 90°, Z/BAP =
/BCP. Let M, N be the mid-points of AC, BC respectively. Suppose BP = 2P M. Prove
that A, P, N are collinear.

Solution:
Extend CP to D such that CP = PD. Let

/BCP = a = /Z/BAP. Observe that BP
is the perpendicular bisector of C'D. Hence
BC = BD and BCD is an isosceles trian-
gle. Thus ZBDP = «. But then ZBDP =
a = /ZBAP. This implies that B, P, A, D
all lie on a circle. In turn, we conclude that
/DAB = /DPB = 90°. Since P is the mid-
point of CP(by construction) and M is the
mid-point of C A(given), it follows that PM is
parallel to DA and DA =2PM = BP. Thus
DBPA is an isosceles trapezium and DB is
parallel to PA.

We hence get

/DPA=/BAP =/BCP = ZNPC;

the last equality follows from the fact that ZBPC = 90°, and N is the mid-point of CB
so that NP = NC = NB for the right-angled triangle BPC. It follows that A, P, N are
collinear.

Alternate Solution:

We use coordinate geometry. Let us take P = (0,0), and the coordinate axes along PC and
PB; We take C = (¢,0) and B = (0,b). Let A = (u,v). We see that N = (¢/2,b/2) and
M = ((u+¢)/2,v/2). The condition PB = 2PM translates to

(u+ c)* +v* = b

We observe that the slope of CP = 0; that of CB is —b/c; that of PA is v/u; and that of
BA is (v — b)/u. Taking proper signs, we can convert ZPCB = ZPAB, via tan function,
to the following relation:

uw? + 0% —vb = —cu.

Thus we obtain
u(u+c) =v(b—v), clc+u)=0bb-uv).

It follows that v/u = b/c. But then we get that the slope of AP and PN are the same. We
conclude that A, P, N are collinear.

2. Define a sequence (a,)5° ; as follows:

B {0, if the number of positive divisors of n is odd,
"=

1, if the number of positive divisors of n is even.



(The positive divisors of n include 1 as well as n.) Let © = 0.a1a2a3 ... be the real number
whose decimal expansion contains a, in the n-th place, n > 1. Determine, with proof,
whether z is rational or irrational.

Solution:

We show that z is irrational. Suppose that z is rational. Then the sequence (a,)5; is

periodic after some stage; there exist natural numbers k, ! such that a,, = a,; for alln > k.
Choose m such that ml > k and ml is a perfect square. Let

m=pip32..pr,  L=pipht. pfr,

be the prime decompositions of m, so that o; + ; is even for 1 < j < r. Now take a prime
p different from pq,po,... ,p,. Consider ml and pml. Since pml — ml is divisible by [, we
have appmi = am. Hence d(pml) and d(ml) have same parity. But d(pml) = 2d(ml), since
ged(p,ml) =1 and p is a prime. Since ml is a square, d(ml) is odd. It follows that d(pml)
is even and hence app,; # ayy;. This contradiction implies that z is irrational.

Alternative Solution: As earlier, assume that z is rational and choose natural numbers
k,l such that a, = ap4 for all n > k. Consider the numbers a1, am+2,- .- , Gmti, Where
m > k is any number. This must contain at least one 0. Otherwise a, = 1 for all n > k.
But a, = 0 if and only if r is a square. Hence it follows that there are no squares for n > k,
which is absurd. Thus every [ consecutive terms of the sequence (a,) must contain a 0 after
certain stage. Let ¢ = max{k,[}, and consider #* and (¢ + 1)?. Since there are no squares
between t? and (£+1)?, we conclude that a2 ; = 1for 1 < j < 2¢. But then, we have 2¢(> 1)
consecutive terms of the sequence (a,) which miss 0, contradicting our earlier observation.

. Find all real numbers z such that
[.102 + 2.13] = [m]2 + Q[m]
(Here [z] denotes the largest integer not exceeding z.)

Solution:
Adding 1 both sides, the equation reduces to

[(z+1)?] = (e + 1))%

we have used [z] +m = [z + m] for every integer m. Suppose z +1 < 0. Then [z + 1] <
z+1<0. Thus ) )
(2 +1)" 2 @+1)" > [(@+1)°] = ([z+1])".

Thus equality holds everywhere. This gives [z + 1] = z + 1 and thus z + 1 is an integer.
Using z + 1 < 0, we conclude that

rze{-1,-2,-3,...}.
Suppose z + 1 > 0. We have
(@+1)?> [(z+1)?%] = (= +1))%
Moreover, we also have

@+1° <1+ [+ =1+ (z+1)>



Thus we obtain

[z]+1=[z+1] < \/1+ [z +1]) \/1 [x—l—l

This shows that

z € [n,v/1+ (n+1)2-1),

where n > —1 is an integer. Thus the solution set is

{—1,—2,—3,...}u{ R VI+ 12 -1) )
It is easy verify that all the real numbers in this set indeed satisfy the given equation.

. All the points in the plane are coloured using three colours. Prove that there exists a
triangle with vertices having the same colour such that either it is isosceles or its angles are
in geometric progression.

Solution:

Consider a circle of positive radius in the plane and inscribe a regular heptagon ABCDEFG
in it. Since the seven vertices of this heptagon are coloured by three colours, some three ver-
tices have the same colour, by pigeon-hole principle. Consider the triangle formed by these
three vertices. Let us call the part of the circumference separated by any two consecutive
vertices of the heptagon an arc. The three vertices of the same colour are separated by arcs
of length I, m,n as we move, say counter-clockwise, along the circle, starting from a fixed
vertex among these three, where [ +m + n = 7. Since, the order of [, m,n does not matter
for a triangle, there are four possibilities: 1+1+4+5=7; 1+24+4=7; 143+3=7; 2+2+4+3=7. In
the first, third and fourth cases, we have isosceles triangles. In the second case, we have
a triangle whose angles are in geometric progression. The four corresponding figures are
shown below.

D E E
C
C
B B B
A A A A
0} (ii) (ii) (iv)

n (i), AB = BC; in (iii), AE = BE; in (iv), AC = CE; and in (ii) we see that ZD = 7/7,
ZA =2n/7 and ZB = 4x /7 which are in geometric progression.

. Let ABC be an acute-angled triangle and let H be its ortho-centre. Let hp,x denote the
largest altitude of the triangle ABC. Prove that

AH + BH + CH < 2hmax-



Solution:

Let ZC be the smallest angle, so that
CA > AB and CB > AB. In this case the

altitude through C' is the longest one. Let
the altitude through C meet AB in D and

: let H be the ortho-centre of ABC'. Let CD
H extended meet the circum-circle of ABC
in K. We have CD = hpya,x so that the

B (o) inequality to be proved is

AH + BH + CH <2CD.
Using CD = CH + HD, this reduces to AH + BH < CD + HD. However, we observe that
AH = AK, BH = BK and HD = DK .(For example BH = BK and DH = DK follow
from the congruency of the right-angled triangles DBK and DBH.)

Thus we need to prove that AK + BK < CK. Applying Ptolemy’s theorem to the cyclic
quadrilateral BCAK, we get
AB-CK =AC-BK+ BC-AK > AB-BK + AB - AK.

This implies that CK > AK + BK, which is precisely what we are looking for.

There were other beautiful solutions given by students who participated in INMO-2009. We
record them here.

1. Let AD, BE, CF be the altitudes and H be the ortho-centre. Observe that

AH [AHB] _[AHC]
AD ~ [ADB] [ADC]

This gives
AH [AHB|+[AHC] [BHC]
AD  [ADB]+[ADC] [ABC]
Similar expressions for the ratios BH/BE and CH/CF may be obtained. Adding, we get
AH 4 BH n CH
AD  BE CF
Suppose AD is the largest altitude. We get

AH+BH+CH<AH+BH+CH_
AD  AD  AD — AD BE CF

2.

2.

This gives the result.

2. Let O be the circum-centre and let L, M, N be the mid-points of BC, CA, AB respec-
tively. Then we know that AH = 20L, BH = 20M and CH = 20N. As earlier, assume
AD is the largest altitude. Then BC is the least side. We have

4[ABC] = 4[BOC] + 4[COA] + 4{/AOB] = BC x20L+ CA x20M + AB x 20N
= BCxAH +CAxBH +ABxCH
> AB(AH + BH + CH).



Thus
4[ABC]

AB

3. We make use of the fact that AH = 2R cos ZA, BH = 2Rcos /B, CH = 2R cos ZC and
AD = 2Rsin /B sin ZC, where R is the circum-radius of ABC. We are assuming that AD
is the largest altitude so that ZA is the least angle. Thus we have to prove that

AH+BH+CH< —24D.

cos LA+ cos £B + cos ZC < 2sin /B/C,

under the assumption ZA < /B and ZA < ZC. On multiplying this by 2sin ZA, this is
equivalent to

2(sin LA cos LA+ sin LA cos £B + sin LA cos LC)
<4sinZAsin ZBZC = sin2A + sin2B + sin 2C.

This is equivalent to

cos ZB(sin ZA — sin ZB) + cos ZC(sin ZA — sin ZC) < 0.
Since ABC' is acute-angled and A is the least angle, the result follows.
. Let a, b, c be positive real numbers such that a3 + b> = ¢3. Prove that

a®> +b* —c? > 6(c—a)(c—b).

Solution:

The given inequality may be written in the form
7¢2 — 6(a + b)c — (a® 4+ b* — 6ab) < 0.

Putting z = 7¢%, y = —6(a + b)c, z = —(a? + b? — 6ab), we have to prove that z +y + 2z < 0.
Observe that z,y, z are not all equal(z > 0, y < 0). Using the identity

1
x3+y3+z3—3xyz:E(m+y+z)[(x—y)2+(y—z)2+(z—x)2],

we infer that it is sufficient to prove z3 + 43 + 23 — 3zyz < 0. Substituting the values of
z,1y, z, we see that this is equivalent to

343¢5 — 216(a + b)3c® — (a® + b2 — 6ab)® — 126¢>(a + b) (a?® + b* — 6ab) < 0.
Using ¢® = a® 4 b3, this reduces to
343 (a4 6%)° —216(a +b)? (a® + %) — (a® + b — 6ab)® — 126((a® +b%) (a + b) (a +b* — 6ab) < 0.
This may be simplified (after some tedious calculations) to,
—a?b%(129a* — 254ab + 129b%) < 0.

But 129a% — 254ab + 1296 = 129(a — b)? + 4ab > 0. Hence the result follows.
Remark: The best constant 8 in the inequality a? + b? — c? > 6(c — a)(c — b), where a, b, c



are positive reals such that a® + b3 = ¢3, is 6 = 2(1 + 21/3 + 271/3).
Here again, there were some beautiful solutions given by students.
1. We have

a®=c® - b = (c—b)(? +cb+b?),

which is same as
a? c® + cb+ b?

c—b a
Similarly, we get
b? &+ ca + a?
c—a b '
We observe that
a? N ¥ cla®+b)—a® -0 cla®+b2—P)
c—b c—a (c—a)(c—b) (c—a)(c—b) "

This shows that

(c—a)(c—b) ca cb

Thus it is sufficient to prove that

a? + b — 2 cz+cb+62+02+ca+a2

A4+ch+b? Z+ca+ad®
_|_
ca cb

> 6.

However, we have ¢® + b% > 2¢b and ¢ + a? > 2ca. Hence

A4+ch+b2 A+ca+a? (b
+
ca cb

We have used AM-GM inequality.

2. Let us set = a/c and y = b/c. Then 23 + y3 = 1 and the inequality to be proved is

2?2 +9y? —1> 6(1 — z)(1 — y). This reduces to
(x4 y)? +6(x+y) —8xy —7>0.

But
1=2%+4% = (z+y)(a* — 2y +¢?),

(1)

which gives zy = ((z+y)* —1)/3(z +y). Substituting this in (1) and introducing z +y = ¢,

the inequality takes the form

t2+6t—§(t3_1)

-7>0.
3 >

This may be simplified to —5¢3 + 18t2 — 2t + 8 > 0. Equivalently

— (5t —8)(t—1)2 > 0.

(2)

Thus we need to prove that 5¢ < 8. Observe that (z +v)% > 3 +9® = 1, so that ¢t > 1. We

also have

T+y <m3+y3_1
2 - 2 2



This shows that 2 < 4. Thus

5t\° 125 x4 500
8 - 512 512
Hence 5t < 8, which proves the given inequality.
3. We write b® = ¢3 — a3 and a® = ¢3 — b3 so that
b3 3
c—a=

2 —ca +a?’

Thus the inequality reduces to

a4+ —-2>6

(2 —ca+a?)(c? —cb+b%)’
This simplifies(after some lengthy calculations) to
— b —(a+b)c® —abc* + (a® + %) + (a* + a®b + a®b? + ab® + b*) P
(a®b + ab® + a3 + b¥)abe + (a*b? — 6430 + a?b*) > 0.
Substituting
S=ad 4+, t=ca®+1%), =@ +%), &= (a®+b),
the inequality further reduces to
a?b?(a® 4+ b% + ¢* + ac + be — 6ab) > 0.

Thus we need to prove that a? +b% +c% 4+ ac+ bc — 6ab > 0. Since a? +b? > 2ab, it is enough
to prove that ¢ + ¢(a + b) — 4ab > 0. Multiplying this by ¢ and using a® + b® = ¢?, we need
to prove that

a® + b + 2a + ?b > 4abe.

Using AM-GM inequality to these 4 terms and using ¢ > a, ¢ > b we get
a® + % + a+ 2b > 4(aPb*Pac®h) /4 = 4abe,

which proves the inequality.




